
Recursive Descent Parsing

 Top-down parsing: build tree from root

symbol

 Each production corresponds to one

recursive procedure

 Each procedure recognizes an instance of a

non-terminal, returns tree fragment for the

non-terminal

General model

 Each right-hand side of a production provides body for a
function

 Each non-terminal on the rhs is translated into a call to
the function that recognizes that non-terminal

 Each terminal in the rhs is translated into a call to the
lexical scanner. Error if the resulting token is not the
expected terminal.

 Each recognizing function returns a tree fragment.

Example: parsing a declaration

 FULL_TYPE_DECLARATION ::=

 type DEFINING_IDENTIFIER is TYPE_DEFINITION;

 Translates into:
 get token type

 Find a defining_identifier -- function call

 get token is

 Recognize a type_definition -- function call

 get token semicolon

 In practice, we already know that the first token is
type, that’s why this routine was called in the first
place! Predictive parsing is guided by the next token

Example: parsing a loop

 FOR_STATEMENT ::=

ITERATION_SCHEME loop STATEMENTS end loop;

Node1 := find_iteration_scheme; -- call function

get token loop

List1 := Sequence of statements -- call function

get token end

get token loop

get token semicolon;

Result := build loop_node with Node1 and List1

return Result

Complications

 If there are multiple productions for a non-

terminal, we need a mechanism to determine

which production to use

IF_STAT ::= if COND then Stats end if;

IF_STAT ::= if COND then Stats ELSIF_PART end if;

When next token is if, can’t tell which production to use.

Solution: factorize grammar

 If several productions have the same prefix,

rewrite as single production:

 IF_STAT ::= if COND then STATS [ELSIF_PART] end if;

 Problem now reduces to recognizing whether an optional

 Component (ELSIF_PART) is present

Complication: recursion

 Grammar cannot be left-recursive:

 E ::= E + T | T

 Problem: to find an E, start by finding an E…

 Original scheme leads to infinite loop:

grammar is inappropriate for recursive-

descent

Solution: remove left-recursion

 E ::= E + T | T means that eventually E

expands into

T + T + T ….

 Rewrite as:

 E ::= TE’

 E’ ::= + TE’ | epsilon

 Informally: E’ is a possibly empty sequence of

terms separated by an operator

Recursion can involve multiple productions

 A ::= B C | D

 B ::= A E | F

 Can be rewritten as:

 A ::= A E C | F C | D

 And then apply previous method

 General algorithm to detect and remove left-

recursion from grammar (see ASU)

Further complication

 Transformation does not preserve associativity:

 E ::= E + T | T

 Parses a + b + c as (a + b) + c

 E ::= TE’, E’ ::= + TE’ | epsilon

 Parses a + b +c as a + (b + c)

 Incorrect for a - b – c : must rewrite tree

In practice: use loop to find sequence of terms

Node1 := P_Term; -- call function that recognizes a term

loop

exit when Token not in Token_Class_Binary_Addop;

Node2 := New_Node (P_Binary_Adding_Operator);

Scan; -- past operator

Set_Left_Opnd (Node2, Node1);

Set_Right_Opnd (Node2, P_Term); -- find next term

Set_Op_Name (Node2);

Node1 := Node2; -- operand for next operation

end loop;

