
Recursive Descent Parsing

 Top-down parsing: build tree from root

symbol

 Each production corresponds to one

recursive procedure

 Each procedure recognizes an instance of a

non-terminal, returns tree fragment for the

non-terminal

General model

 Each right-hand side of a production provides body for a
function

 Each non-terminal on the rhs is translated into a call to
the function that recognizes that non-terminal

 Each terminal in the rhs is translated into a call to the
lexical scanner. Error if the resulting token is not the
expected terminal.

 Each recognizing function returns a tree fragment.

Example: parsing a declaration

 FULL_TYPE_DECLARATION ::=

 type DEFINING_IDENTIFIER is TYPE_DEFINITION;

 Translates into:
 get token type

 Find a defining_identifier -- function call

 get token is

 Recognize a type_definition -- function call

 get token semicolon

 In practice, we already know that the first token is
type, that’s why this routine was called in the first
place! Predictive parsing is guided by the next token

Example: parsing a loop

 FOR_STATEMENT ::=

ITERATION_SCHEME loop STATEMENTS end loop;

Node1 := find_iteration_scheme; -- call function

get token loop

List1 := Sequence of statements -- call function

get token end

get token loop

get token semicolon;

Result := build loop_node with Node1 and List1

return Result

Complications

 If there are multiple productions for a non-

terminal, we need a mechanism to determine

which production to use

IF_STAT ::= if COND then Stats end if;

IF_STAT ::= if COND then Stats ELSIF_PART end if;

When next token is if, can’t tell which production to use.

Solution: factorize grammar

 If several productions have the same prefix,

rewrite as single production:

 IF_STAT ::= if COND then STATS [ELSIF_PART] end if;

 Problem now reduces to recognizing whether an optional

 Component (ELSIF_PART) is present

Complication: recursion

 Grammar cannot be left-recursive:

 E ::= E + T | T

 Problem: to find an E, start by finding an E…

 Original scheme leads to infinite loop:

grammar is inappropriate for recursive-

descent

Solution: remove left-recursion

 E ::= E + T | T means that eventually E

expands into

T + T + T ….

 Rewrite as:

 E ::= TE’

 E’ ::= + TE’ | epsilon

 Informally: E’ is a possibly empty sequence of

terms separated by an operator

Recursion can involve multiple productions

 A ::= B C | D

 B ::= A E | F

 Can be rewritten as:

 A ::= A E C | F C | D

 And then apply previous method

 General algorithm to detect and remove left-

recursion from grammar (see ASU)

Further complication

 Transformation does not preserve associativity:

 E ::= E + T | T

 Parses a + b + c as (a + b) + c

 E ::= TE’, E’ ::= + TE’ | epsilon

 Parses a + b +c as a + (b + c)

 Incorrect for a - b – c : must rewrite tree

In practice: use loop to find sequence of terms

Node1 := P_Term; -- call function that recognizes a term

loop

exit when Token not in Token_Class_Binary_Addop;

Node2 := New_Node (P_Binary_Adding_Operator);

Scan; -- past operator

Set_Left_Opnd (Node2, Node1);

Set_Right_Opnd (Node2, P_Term); -- find next term

Set_Op_Name (Node2);

Node1 := Node2; -- operand for next operation

end loop;

