o SR

LR Parser Construction

1/27/2020

i Agenda

= LR(0) state construction
= FIRST, FOLLOW, and nullable
= Variations: SLR, LR(1), LALR

1/27/2020

i LR State Machine

= Idea: Build a DFA that recognizes
handles

= Language generated by a CFG is generally
not regular, but

= Language of handles for a CFG is regular
= S0 a DFA can be used to recognize handles

= Parser reduces when DFA accepts

1/27/2020

i Prefixes, Handles, &c (review)

= If S'is the start symbol of a grammar G,
s If S=>* o then o is a sentential form of G

= v IS a viable prefix of Gif there is some derivation
S =>*_ oaAwW =>*__ afw
and vy is a prefix of ap.

= The occurrence of B in afw is a handle of apfw

= An /temis a marked production (a . at some
position in the right hand side)
s [Aii=.XY] [Aii=X.Y] [Ai=XY.]

1/27/2020

i Building the LR(0) States

= Example grammar

§5::=5%
Si:=(L)
S:ii=X
L::=5
L::=L,5

= We add a production S’ with the original start
symbol followed by end of file ($)

= Question: What language does this grammar
generate?

1/27/2020

0. §::=5%
1. S::=(L)
2. S5::=X
3. L:=5
4, L:=L, S

i Start of LR Parse

O InltlaIIy
= Stack is empty
« Input is the right hand side of 57 i.e., $%
=« Initial configurationis [$7::= . S $]
» But, since position is just before S, we are

also just before anything that can be
derived from S

1/27/2020

0. §::=5%
1. S::=(L)
2. S5::=X
3. L:=5
4, L:=L, S

i Initial state

S/rr= 5$¢/—start
S:=.(L),
Sii=.X +

= A state is just a set of items
« Start: an initial set of items

= Completion (or closure): additional productions
whose left hand side appears to the right of the
dot in some item already in the state

T~ completion

1/27/2020

0. §::=5%
1. S::=(L)
2. S:i=X
3. L:=5
4, L:=L, S

i Shift Actions (1)

S'ii=.5%
[)——{S=X.

S:i=.(
S::=.X

= To shift past the x, add a new state with the
appropriate item(s)
= In this case, a single item; the closure adds nothing

= This state will lead to a reduction since no further shift is
possible

1/27/2020

0. g’.:=(5$)
S Shex
i Shift Actions (2) LS
S::=(.L)
Si=.5% (|[L=.L,S
Si=.(L) Lo=05
Sii=.X S:=.(L)
S:'=.X

= If we shift past the (, we are at the beginning of L

= the closure adds all productions that start with L,
which requires adding all productions starting with S

1/27/2020

0. §::=5%
1. S::=(L)
2. S5::=X
3. L:=5
4, L:=L, S

i Goto Actions

S
L$) > 5= S.$

5=,
S.=.(
S . X

= Once we reduce S, we'll pop the rhs
from the stack exposing the first state.
Add a gofto transition on S for this.

1/27/2020

i Basic Operations

s Closure (S)
= Adds all items implied by items already in S

s Goto (1, X)
= /is a set of items

= Xis a grammar symbol (terminal or non-
terminal)

= Goto moves the dot past the symbol X in
all appropriate items in set 7

1/27/2020

i Closure Algorithm

s Closure(S) =
repeat
foranyitem[A:i=a . XB]INS
for all productions X ::= vy
add [X::i=.y]to S
until § does not change
return S

1/27/2020

i Goto Algorithm

s Goto([X) =
set new to the empty set
foreachitem[A:i=a. X B]in [
add [A ;= a X. B] to new
return Closure (new)

= This may create a new state, or may return an
existing one

1/27/2020

i LR(0) Construction

= First, augment the grammar with an
extra start production §7::= 5%

= Let 7 be the set of states

= Let £ be the set of edges

= Initialize 7 to Closure([S7::=. 5%])
= Initialize £ to empty

1/27/2020

i LR(0) Construction Algorithm

repeat
foreach state 7 in 7
foreachitem [A:i=a . X B]in[
Let new be Goto(1, X)
Add new to T if not present
Add 72snew to E if not present
until £ and 7 do not change in this iteration

= Footnote: For symbol $, we don‘t compute gotfo (1, $); instead,
we make this an accept action.

1/27/2020

i LR(0) Reduce Actions

= Algorithm:
Initialize R to empty
foreach state 7 in 7
foreachitem[A:i=a .]in [/
add ([, A::=o)to R

1/27/2020

i Building the Parse Tables (1)

= For each edge 7 — J

« if X'is a terminal, put s; in column X, row 7
of the action table (shift to state ;)

« If X is @ non-terminal, put g; in column X,
row 7 of the goto table

1/27/2020

i Building the Parse Tables (2)

= For each state / containing an item
[S7 .= 5. %], put acceptin column $ of
row /

= Finally, for any state containing
[A::= v .] put action rn7in every column
of row 7in the table, where nis the
production number

1/27/2020

Example States for

&

5 5., 00

—

L= .5
® ﬁ 45
’-)50 s> . (‘—)

1/27/2020

e L————)l(so(.¢) =

5.X

P W O

@ s ’—>,5¢ [x T o a2 G
{lfi— QeL, Sp

S-’ c(L)

57 =:5%
Se=itL)
e
L=-8
R S
'31—)5—

B §=.5%
1. Si=iLL)
2. Sii=X
* Example: Tables for 3z :i=s .
|
- F f) X o ¥ F L
’Z :_z rL .ff r r 94
3 |lsn s o7 ‘75
z -
c {6 s3
C Pl | rl rl "l ’P l
/77 r3 r3 iR
] 53 sZ 901
C? \ya‘f r4 rH r4 ’~‘1

1/27/2020

i Where Do We Stand?

= We have built the LR(0) state machine
and parser tables
= No lookahead yet

= Different variations of LR parsers add
lookahead information, but basic idea of
states, closures, and edges remains the
same

1/27/2020

i A Grammar that is not LR(0)

= Build the state machine and parse
tables for a simple expression grammar
=F%
T+ E
-
X

S mm Y
I

1/27/2020

LR(0) Parser for

@® @
S::=.E$ E:S::=E$ 1
E::=.T+E 2
E::=.T T@ 3
T:=.X »E::=T.+E 4
E::=T.
X Y 5
OR + T 6
Ti=x. @
E::=T+.E
(6) E:=.T+
Eu=T+E bt |E==-T
E::=.X

1/27/2020

0. S::=F$%

1. E::=T+ E

2. E::=T

3. T::=X

X + $ E T
s5 g2 G3

acc
r2 s4,r2 r2
s5 g6 G3
r3 r3 r3
rl rl rl

State 3 is has two possible
actions on +

= shift 4, or reduce 2

. Grammar is not LR(0)

i SLR Parsers

s Idea: Use information about what can follow
a non-terminal to decide if we should perform
a reduction

= Easiest form is SLR — Simple LR

= SO we need to be able to compute
FOLLOW(A) — the set of symbols that can
follow A in any possible derivation

= But to do this, we need to compute FIRST(y) for
strings vy that can follow A

1/27/2020

i Calculating FIRST(y)

= Sounds easy... If y = XY Z, then
FIRST(y) is FIRST(X), right?

= But what if we have the rule X ::= €?

= In that case, FIRST(y) includes anything
that can follow an X—i.e. FOLLOW(X)

1/27/2020

i FIRST, FOLLOW, and nullable

= nullable(X) is true if X can derive the empty
string

= Given a string y of terminals and non-
terminals, FIRST(y) is the set of terminals
that can begin strings derived from v.

s FOLLOW(X) is the set of terminals that can
immediately follow X in some derivation

= All three of these are computed together

1/27/2020

Computing FIRST, FOLLOW,
i and nullable (1)

= Initialization
set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a

1/27/2020

Computing FIRST, FOLLOW,
i and nullable (2)

repeat
for each production X:= Y, ¥, ... %
if ;... ¥ are all nullable (or if k= 0)
set nullable[X'] = true
for each 7 from 1 to k and each 7 from /+1 to &
if ;... ¥, areall nullable (orif /= 1)
add FIRST[¥] to FIRST[X]
if ¥.,... ¥ areall nullable (orif /= k)
add FOLLOW[X] to FOLLOWTI ¥]
if ¥, ... ¥ are all nullable (or if i+1=j)
add FIRST[¥,] to FOLLOW[¥]
Until FIRST, FOLLOW, and nullable do not change

1/27/2020

i Example

= Grammar
7=
L= X Y2
JSYii=¢
$Y = ¢
s Xu=Y
V' Xii=3

1/27/2020

nullable
+rn.e

$rt

Z Lodse

FIRST

g o~
{c

fd,™~)¢

FOLLOW
¢ ¢, oo/

59

i SLR Construction

= This is identical to LR(0) — states, etc., except
for the calculation of reduce actions

= Algorithm:
Initialize R to empty
foreach state 7 in 7
foreachitem[A::=a.]in [
for each terminal a in FOLLOW(A)
add (/,a, A::=a)to R
= i.e., reduce o to A in state /7 only on lookahead a

1/27/2020

i SLR Parser for

@® @

su=.E$ |[su=E.$

E::=.T+E

= <::>

E ==-1- 'T: E::=T.+E
E::=T.

® |x —

'?'::=x. @ T
EE i'T-+ . E

1/27/2020

A U1 AW N =

0. S::=ES$
1. E:=T+E
2. E =
3. Tu=
X + $ E T
s5 g2 g3
s4 r2
s5 g6 g3
r3 r3
rl

i On To LR(1)

= Many practical grammars are SLR
= LR(1) is more powerful yet

= Similar construction, but notion of an
item is more complex, incorporating
lookahead information

1/27/2020

i LR(1) Items

= An LR(1) item [A:i=a . B, a] is

= A grammar

oroduction (A ::= af)

= A right hand side position (the dot)

= A lookaheac

symbol (a)

= Idea: This item indicates that o is the
top of the stack and the next input is
derivable from Ba.

s Full construction: see the book

1/27/2020

i LR(1) Tradeoffs

= LR(1)
= Pro: extremely precise; largest set of
grammars

= Con: potentially very large parse tables
with many states

1/27/2020

i LALR(1)

= Variation of LR(1), but merge any two
states that differ only in lookahead
= Example: these two would be merged
[A::=Xx.,a]
[A::=Xx.,D]

1/27/2020

i LALR(1) vs LR(1)

= LALR(1) tables can have many fewer
states than LR(1)

= LALR(1) may have reduce conflicts
where LR(1) would not (but in practice
this doesn’t happen often)

1/27/2020

i Language Heirarchies

-

unambiguous grammars

/ LUK)

L))

ambiguous
grammars

1/27/2020

i Coming Attractions

= LL(k) Parsing — Top-Down
s Recursive Descent Parsers

= What you can do if you need a parser in a
hurry

1/27/2020

