

LR Parser Construction

1/27/2020

Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR

LR State Machine

- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of handles for a CFG is regular
 - So a DFA can be used to recognize handles
 - Parser reduces when DFA accepts

Prefixes, Handles, &c (review)

• If *S* is the start symbol of a grammar *G*,

- If $S = >^* \alpha$ then α is a *sentential form* of *G*
- γ is a *viable prefix* of *G* if there is some derivation $S = \sum_{rm}^{*} \alpha A w = \sum_{rm}^{*} \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
- The occurrence of β in $\alpha\beta w$ is a *handle* of $\alpha\beta w$
- An *item* is a marked production (a . at some position in the right hand side)

• [A ::= . X Y] [A ::= X . Y] [A ::= X Y .]

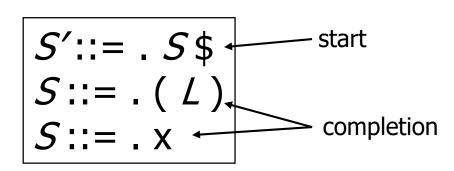
Building the LR(0) States

Example grammar S'::= S\$ S ::= (L) S ::= x L ::= S L ::= L, S

- We add a production S' with the original start symbol followed by end of file (\$)
- Question: What language does this grammar generate?

Start of LR Parse

- Initially
 - Stack is empty
 - Input is the right hand side of S', i.e., S\$
 - Initial configuration is [S' ::= . S \$]
 - But, since position is just before S, we are also just before anything that can be derived from S



Initial state

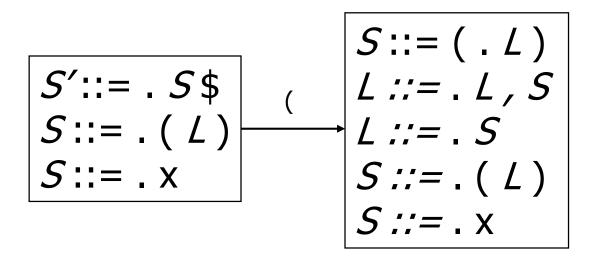
- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

$$S'::= . S$$

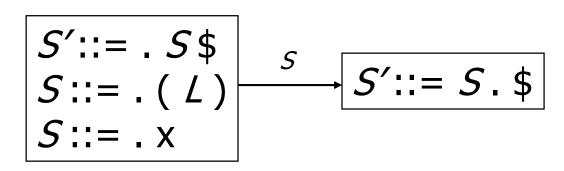
$$S::= . (L) \xrightarrow{\times} S::= x .$$

- To shift past the x, add a new state with the appropriate item(s)
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible

Shift Actions (2)



- If we shift past the (, we are at the beginning of L
- the closure adds all productions that start with L, which requires adding all productions starting with S



Goto Actions

 Once we reduce *S*, we'll pop the rhs from the stack exposing the first state.
 Add a *goto* transition on *S* for this.

Basic Operations

- Closure (S)
 - Adds all items implied by items already in S
- Goto (I, X)
 - I is a set of items
 - X is a grammar symbol (terminal or nonterminal)
 - Goto moves the dot past the symbol X in all appropriate items in set I

Closure Algorithm

• Closure (S) =repeat for any item [A ::= α . X β] in S for all productions $X ::= \gamma$ add $[X := .\gamma]$ to S until S does not change return S

Goto Algorithm

• Goto (I, X) =

set *new* to the empty set for each item $[A ::= \alpha \cdot X \beta]$ in *I* add $[A ::= \alpha X \cdot \beta]$ to *new* return *Closure* (*new*)

This may create a new state, or may return an existing one

LR(0) Construction

- First, augment the grammar with an extra start production S'::= S\$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to Closure ([S'::= . S \$])
- Initialize E to empty

LR(0) Construction Algorithm

repeat for each state *I* in *T* for each item $[A ::= \alpha \cdot X \beta]$ in *I* Let *new* be *Goto* (*I*, *X*) Add *new* to *T* if not present Add $I \xrightarrow{X} new$ to *E* if not present until *E* and *T* do not change in this iteration

Footnote: For symbol \$, we don't compute goto (I, \$); instead, we make this an accept action.

LR(0) Reduce Actions

 Algorithm:
 Initialize *R* to empty for each state *I* in *T* for each item [*A* ::= α .] in *I* add (*I*, *A* ::= α) to *R*

Building the Parse Tables (1)

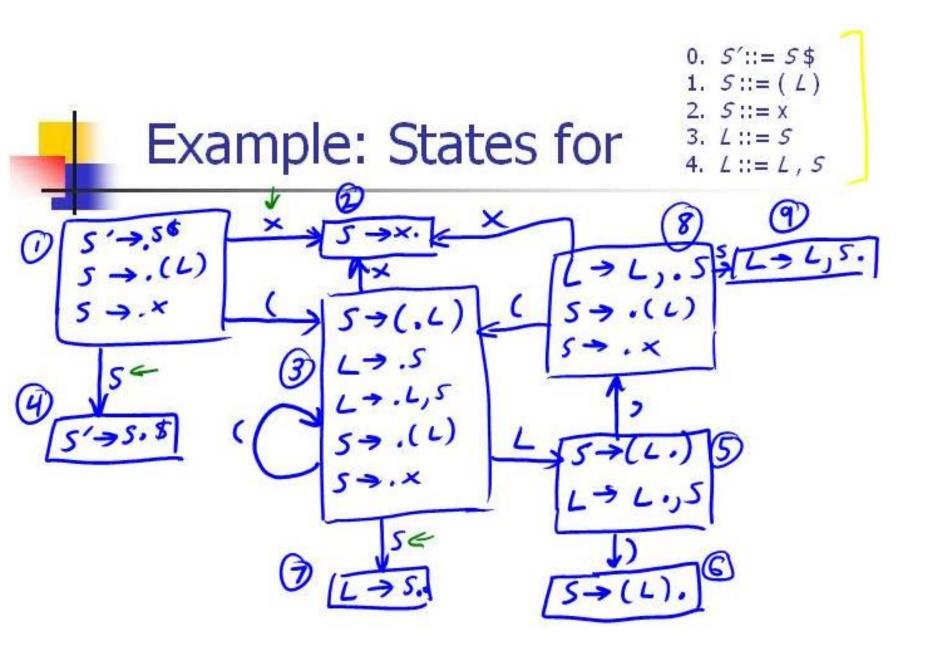
For each edge $I \xrightarrow{\times} J$

- if X is a terminal, put sj in column X, row I of the action table (shift to state j)
- If X is a non-terminal, put gj in column X, row I of the goto table

Building the Parse Tables (2)

- For each state I containing an item
 [S' ::= S. \$], put accept in column \$ of row I
- Finally, for any state containing

 [A ::= γ .] put action rn in every column of row I in the table, where n is the production number



	Ex	am	ple:	Та	bles	s for	1. 2. 3.	S'::= S\$ S::= (L) S::= X L::= S L::= L, S
-	C)	×	و	\$	5	L	
12	53 r2	r2	52	r2	2	94		
23	53		52			97	95	
4		56		58	acc			
5678	ri	rl	rl	rl	rl			
7	13	13	r3	r3	13	99		
89	53	r4	52	14	r4	91		

Where Do We Stand?

- We have built the LR(0) state machine and parser tables
 - No lookahead yet
 - Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

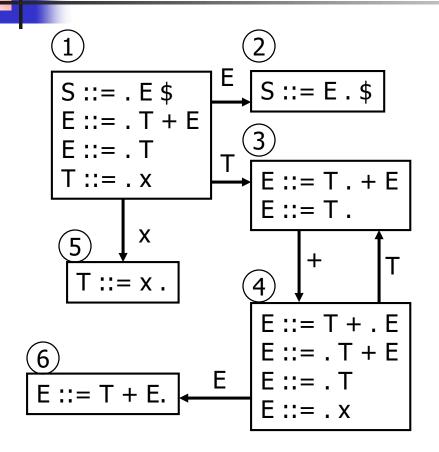
A Grammar that is not LR(0)

 Build the state machine and parse tables for a simple expression grammar

$$S ::= E \$$$

 $E ::= T + E$
 $E ::= T$
 $T ::= x$

	0. $S ::= E$ \$
	1. $E ::= T + E$
ID(0) Darcor for	2. <i>E</i> ::= <i>T</i>
LR(0) Parser for	3. <i>T</i> ::= x



	х	+	\$	Е	Т
1	s5			g2	G3
2			асс		
3	r2	s4,r2	r2		
4	s5			g6	G3
5	r3	r3	r3		
6	r1	r1	r1		

- State 3 is has two possible actions on +
 - shift 4, or reduce 2
- ∴ Grammar is not LR(0)

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
- Easiest form is SLR Simple LR
- So we need to be able to compute
 FOLLOW(A) the set of symbols that can follow A in any possible derivation
 - But to do this, we need to compute FIRST(γ) for strings γ that can follow A

Calculating FIRST(γ)

• Sounds easy... If $\gamma = X Y Z$, then FIRST(γ) is FIRST(X), right?

- But what if we have the rule X ::= ε?
 In that case, FIRST(γ) includes anything
- that can follow an X- i.e. FOLLOW(X)

FIRST, FOLLOW, and nullable

- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and nonterminals, FIRST(γ) is the set of terminals that can begin strings derived from γ.
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable (1)

Initialization

set FIRST and FOLLOW to be empty sets set nullable to false for all non-terminals set FIRST[a] to a for all terminal symbols a

Computing FIRST, FOLLOW, and nullable (2)

repeat

for each production $X := Y_1 Y_2 \dots Y_k$ if $Y_1 \dots Y_k$ are all nullable (or if k = 0) set nullable[X] = true for each *i* from 1 to k and each *j* from *i*+1 to k if $Y_1 \dots Y_{i-1}$ are all nullable (or if i = 1) add FIRST[Y_i] to FIRST[X] if $Y_{i+1} \dots Y_k$ are all nullable (or if i = k) add FOLLOW[X] to FOLLOW[Y_i] if $Y_{i+1} \dots Y_{i-1}$ are all nullable (or if i+1=j) add $FIRST[Y_i]$ to $FOLLOW[Y_i]$ Until FIRST, FOLLOW, and nullable do not change

Example

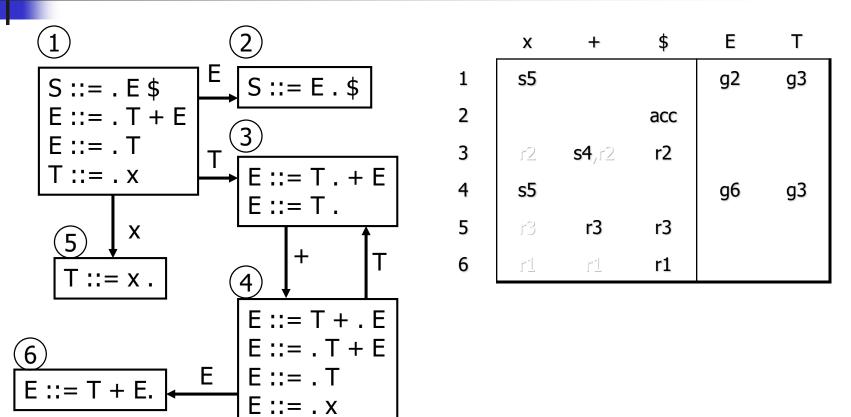
Grammar
 Z::= d
 Z::= X Y Z
 Y::= ε
 Y::= c
 X::= Y
 X::= a

	nullable	FIRST	FOLLOW
X	the fatse	Ea	i c, a,d
Y	frue false	{c	a, çd
Z	folic	٤d, a, c	

SLR Construction

- This is identical to LR(0) states, etc., except for the calculation of reduce actions
- Algorithm:

Initialize *R* to empty for each state *I* in *T*for each item [*A* ::= α .] in *I*for each terminal a in FOLLOW(*A*) add (*I*, a, *A* ::= α) to *R*i.e., reduce α to *A* in state *I* only on lookahead a



On To LR(1)

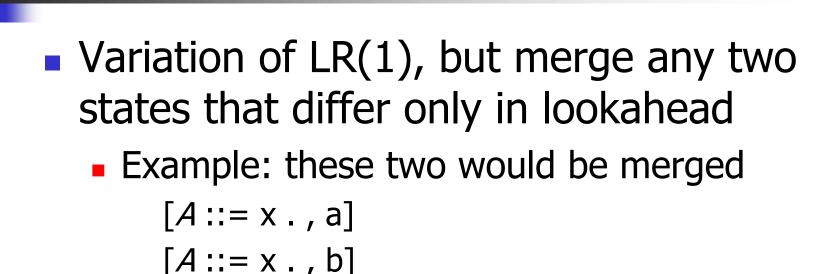
- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An LR(1) item [$A ::= \alpha \cdot \beta$, a] is
 - A grammar production ($A ::= \alpha \beta$)
 - A right hand side position (the dot)
 - A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from βa.
- Full construction: see the book

LR(1) Tradeoffs

- LR(1)
 - Pro: extremely precise; largest set of grammars
 - Con: potentially very large parse tables with many states

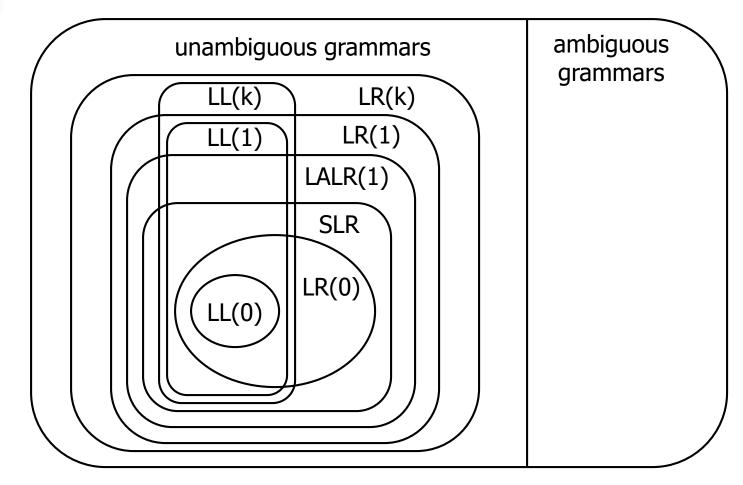


LALR(1)

LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn't happen often)

Language Heirarchies



Coming Attractions

- LL(k) Parsing Top-Down
- Recursive Descent Parsers
 - What you can do if you need a parser in a hurry