
27-Jan-20 1

Intermediate Representations(IR)

• (from previous lectures) The Front-End analyses the source code.

• The Intermediate Representation encodes all the knowledge that the
compiler has derived about the source program.

To follow: Back-End transforms the code, as represented by the IR, into
target code.

Recall: Middle-End, may transform the code represented by the IR into
equivalent code that may perform more efficiently. Typically:

Front-EndSource code Object code
Back-EndLexical

Analysis

IR
Syntax

Analysis
Context-
Sensitive
Analysis

Front-End Back-EndLL optimis.Generate LLIRHL optimis.
HL

IR
LL

IR

LL

IR

HL

IR

About IRs, taxonomy, etc...
• Why use an intermediate representation?

– To facilitate retargeting.
– To enable machine independent-code optimisations or more

aggressive code generation strategies.

• Design issues:
– ease of generation; ease of manipulation; cost of manipulation;

level of abstraction; size of typical procedure.
– Decisions in the IR design have major effects on the speed and

effectiveness of compiler.

• A useful distinction:
– Code representation: AST, 3-address code, stack code, SSA form.
– Analysis representation (may have several at a time): CFG, ...

• Categories of IRs by structure:
– Graphical (structural): trees, DAGs; used in source to source

translators; node and edge structures tend to be large.
– Linear: pseudo-code for some abstract machine; large variation.
– Hybrid: combination of the above.

There is no universally good IR. The right choice depends on the goals of the compiler!

27-Jan-20 3

From Parse Trees to Abstract Syntax Trees
• Why we don’t want to use the parse tree?

– Quite a lot of unnecessary information...

• How to convert it to an abstract syntax tree?

– Traverse in postorder (postfix)

– Use mkleaf and mknode where

appropriate

– Match action with grammar rule

Goal

Term

Expr

Expr Term-

Term

x

Factor yFactor

Factor*

2

1. Goal Expr 5. Term Term * Factor
2. Expr Expr + Term 6. | Term / Factor
3. | Expr – Term 7. | Factor
4. | Term 8. Factor number

9. | id

Abstract Syntax Trees
An Abstract Syntax Tree (AST) is the procedure’s parse

tree with the non-terminal symbols removed.

Example: x – 2*y

• The AST is a near source-level representation.

• Source code can be easily generated: perform an inorder treewalk
- first the left subtree, then the root, then the right subtree -
printing each node as visited.

• Issues: traversals and transformations are pointer-intensive;
generally memory-intensive.

• Example: Stmt_sequence stmt; Stmt_sequence | stmt

– At least 3 AST versions for stmt; stmt; stmt

x

-

*

y2

stmt stmt

;

;

stmt
stmtstmt stmt

Seq.

stmt

stmt

stmt

AST real-world example (dHPF)

PROGRAM MAIN
REAL A(100), X

!HPF$ PROCESSORS P(4)
!HPF$ DISTRIBUTE A(BLOCK) ONTO P

FORALL (i=1:100) A(i) = X+1
CALL FOO(A)

END

SUBROUTINE FOO(X)
REAL X(100)

!HPF$ INHERIT X

IF (X(1).EQ.0) THEN
X = 1

ELSE
X = X + 1

END IF
RETURN
END

(1[GLOBAL] ! 2 components in true
((2[PROG_HEDR] ! 6 components in true

(3[VAR_DECL]
4[PROCESSORS_STMT]
5[DISTRIBUTE_DECL]
(6[FORALL_STMT]

(7[ASSIGN_STAT]
8[CONTROL_END]

)
NULL

)
9[PROC_STAT]
10[CONTROL_END]

)
NULL

)
(11[PROC_HEDR]

(12[VAR_DECL]
13[INHERIT_DECL]
(14[LOGIF_NODE] ! both branchs are non empty

(15[ASSIGN_NODE]
16[CONTROL_END]

)
(17[ASSIGN_NODE]
18[CONTROL_END]

)
)
19[RETURN_STAT]
20[CONTROL_END]

)
NULL

)
NULL

)

27-Jan-20 6

Directed Acyclic Graphs (DAGs)
A DAG is an AST with a unique node for each value

Example: The DAG for x*2+x*2*y

Powerful representation, encodes redundancy; but difficult to

transform, not useful for showing control-flow.

Construction:

• Replace constructors used to build an AST with versions that

remember each node constructed by using a table.

• Traverse the code in another representation.

Exercise: Construct the DAG for x=2*y+sin(2*x); z=x/2

+

*

2x

*

y

27-Jan-20 7

Auxiliary Graph Representations
The following can be useful for analysis:

• Control-Flow Graph (CFG): models the way that the code

transfers control between blocks in the procedure.

– Node: a single basic block (a maximal straight line of code)

– Edge: transfer of control between basic blocks.

– (Captures loops, if statements, case, goto).

• Data Dependence Graph: encodes the flow of data.

– Node: program statement

– Edge: connects two nodes if one uses the result of the other

– Useful in examining the legality of program transformations

• Call Graph: shows dependences between procedures.

– Useful for interprocedural analysis.

27-Jan-20 COMP30142 Lecture 12 8

Examples / Exercises
Draw the control-flow graph of the following:
Stmtlist1
if (x=y)

stmtlist2
stmtlist1

else
stmtlist3
stmtlist1

stmtlist4

stmtlist1
while (x<k)

stmtlist2
stmtlist3
Draw the data dependence graph of:
1. sum=0
2. done=0
3. while !done do
4. read j
5. if (j>0)
6. sum=sum+j
7. if (sum>100)
8. done=1
9. else
10. sum=sum+1
11. endif
12.endif
13.endwhile
14.print sum

what about:1. Do i=1,n
2. A(I)=a(3*I+10)

Draw the call graph of:
void a() { … b() … c() … f() … }
void b() { … d() … c() … }
void c() { … e() … }
void d() { … }
void e() { … b() … }
void f() { … d() …}

Three-address code
A term used to describe many different representations: each statement

is a single operator and at most three operands.

Example: if (x>y) then z=x-2*y becomes:
t1=load x
t2=load y
t3=t1>t2
if not(t3) goto L
t4=2*t2
t5=t1-t4
z=store t5

L: …

Advantages: compact form, makes intermediate values explicit,

resembles many machines.

Storage considerations (until recently compile-time space was an issue)

x–2*y Quadruples (Indirect) Triples
load r1,y load 1 y - load y
loadi r2,2 loadi 2 2 - loadi 2
mult r3,r2,r1 mult 3 2 1 mult (1),(2)
load r4,x load 4 x - load x
sub r5,r4,r3 sub 5 4 3 sub (4),(3)

Array addresses have to be converted to

single memory access, e.g., A[I] will

require a ‘load I’ and then ‘t1=I*sizeof(I);

load A+t1’

27-Jan-20 10

Other linear representations
• Two address code is more compact: In general, it allows

statements of the form x=x <op> y (single operator and
at most two operands).

load r1,y
loadi r2,2
mult r2,r2,r1
load r3,x
sub r3,r3,r2

• One address code (also called stack machine code) is
more compact. Would be useful in environments where
space is at a premium (has been used to construct
bytecode interpreters for Java):

push 2
push y
multiply
push x
subtract

Some Examples
• 1: Simple back-end compiler:

– Code: CFG + 3-address code
– Analysis info: value DAG (represents dataflow in basic block)

• 2. Sun Compilers for SPARC:
– Code: 2 different IRs
– Analysis info: CFG+dependence graph+??
– High-level IRs: linked list of triples
– Low-level IRs: SPARC assembly like operations

• 3. IBM Compilers for Power, PowerPC:
– Code: Low-level IR
– Analysis info: CFG + value graph + dataflow graphs.

• 4. dHPF compiler:
– Code: AST
– Analysis info: CFG+SSA+Value DAG+Call Graph

(SSA stands for Static Single Assignment: same as 3-address code, but all
variables have a distinct name every time they are defined; if they are
defined in different control paths the statement x3=Ø(x1,x2) is used to
combine the two definitions)

Remark:
– Many kinds of IR are used in practice. Choice depends...

• But… representing code is half the story!
• Symbol tables, constants table, storage map.

27-Jan-20 12

Symbol Tables: The key idea
• Introduce a central repository of facts:

– symbol table or sets of symbol tables

• Associate with each production a snippet of code that would
execute each time the parser reduces that production - action
routines. Examples:

– Code that checks if a variable is declared prior to use (on a
production like Factorid)

– Code that checks that each operator and its operands are type-
compatible (on a production like TermTerm*Factor)

• Allowing arbitrary code provides flexibility.

• Evaluation fits nicely with LR(1) parsing.

• Symbol tables are retained across compilation (carry on

for debugging too)

27-Jan-20 13

What information is stored in the symbol table?
What items to enter in the symbol table?

• Variable names; defined constants; procedure and function names;

literal constants and strings; source text labels; compiler-generated

temporaries.

What kind of information might the compiler need about each item:

• textual name, data type, declaring procedure, storage information.

Depending on the type of the object, the compiler may want to know

list of fields (for structures), number of parameters and types (for

functions), etc…

In practice, many different tables may exist.

Symbol table information is accessed frequently:

hence, efficiency of access is critical!

27-Jan-20 14

Organising the symbol table
• Linear List:

– Simple approach, has no fixed size; but inefficient: a lookup may
need to traverse the entire list: this takes O(n).

• Binary tree:
– An unbalanced tree would have similar behaviour as a linear list

(this could arise if symbols are entered in sorted order).

– A balanced tree (path length is roughly equal to all its leaves)
would take O(log2n) probes per lookup (worst-case). Techniques

exist for dynamically rebalancing trees.

• Hash table:
– Uses a hash function, h, to map names into integers; this is taken as

a table index to store information. Potentially O(1), but needs
inexpensive function, with good mapping properties, and a policy

to handle cases when several names map to the same single index.

27-Jan-20 15

Bucket hashing (open hashing)

• A hash table consisting of a fixed array

of m pointers to table entries.

• Table entries are organised as separate

linked lists called buckets.

• Use the hash function to obtain an

integer from 0 to m-1.

• As long as h distributes names fairly

uniformly (and the number of names is

within a small constant factor of the

number of buckets), bucket hashing

behaves reasonably well.

foo... qq...

i...

27-Jan-20 16

Linear Rehashing (open addressing)
• Use a single large table to hold

records. When a collision is

encountered, use a simple technique

(i.e., add a constant) to compute

subsequent indices into the table until

an empty slot is found or the table is

full. If the constant is relatively prime

to the table size, this, eventually, will

check every slot in the table.

• Disadvantages: too many collisions

may degrade performance. Expanding

the table may not be straightforward.

a

b

rehash

If h(a)=h(b) rehash

(say, add 3).

27-Jan-20 17

Other issues
• Choosing a good hash function is of paramount importance:

– take the hash key in four-byte chunks, XOR the chunks together and take this number
modulo 2048 (this is the symbol table size). What is the problem with this?

– See the universal hashing function (Cormen, Leiserson, Rivest), Knuth’s multiplicative
function… This is one of those cases we should pay attention to theory!

• Lexical scoping:
– Many languages introduce independent name scopes:

• C, for example, may have global, static (file), local and block scopes.

• Pascal: nested procedure declarations

• C++, Java: class inheritance, nested classes

• C++, Java, Modula: packages, namespaces, modules, etc…

• Namespaces allow two different entities to have the same name within the
same scope: E.g.: In Java, a class and a method can have the same name
(Java has six namespaces: packages, types, fields, methods, local variables,
labels)

– The problems:
• at point x, which declaration of variable y is current?

• as parser goes in and out of scopes, how does it track y? allocate and initialise a
symbol table for each level!

Conclusion
• Many intermediate representations – there is no

universally good one! A combination might be used!

• Representing code is half the story - Hash tables are used

to store program names.

• Choice of an appropriate hash function is key to an efficient

implementation.

• In a large system it may be worth the effort to create a flexible

symbol table.

• Fully qualified names (i.e., file.procedure.scope.x) to deal with

scopes is not a good idea (the extra work needed to build qualified

names is not worth the effort).

