
15-411 Compiler Design: Lab 5

Fall 2007

Instructor: Frank Pfenning
TAs: David McWherter and Noam Zeilberger

Benchmarks due: 11:59pm, Thursday, November 29, 2007
Compilers due: 11:59pm, Thursday, December 6, 2007

Term Paper due: 11:59pm, Thursday, December 13, 2007

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. You have the choice of two
projects: implementation of various optimizations for L3 or implementation of a garbage collector
for L3 .

2 Requirements

You are required to hand in three separate items: (1) benchmarks which can be used to evaluate
your optimizations or test files for your garbage collector, (2) the working compiler and runtime
system, and (3) a term paper describing and critically evaluating your project. The language L3
remains unchanged from Lab 4.

3 Benchmarks and Tests

Optimization Benchmarks

If you are planning to implement optimizations, you should submit benchmarks. The benchmark
files you submit must be as in previous labs except that they should also define several specific
functions that will be used by the driver for timing purposes. Your compiler should not verify the
presence of these functions so we can still run it on older suites for the purpose of regression testing.
Your functions should work in both safe and unsafe modes.

• τ* init(param : int); This function should create an instance of your benchmark prob-
lem, such as an array to sort. The size of your data structure and therefore the running time
of your benchmark should vary with param. The init function will not be timed. The type
τ may be different for different benchmarks, since the driver only passes this pointer around
without examining its value.

We encourage you to use the library function int rand(); to generate random elements in
your data structure each time init is called. The result of init should be predictable and
portable, depending only on the random seed which the driver (but not your init function)
can set by calling the C library function srand.

1



• int prepare(data : τ*, param : int); This function should prepare an instance of
your problem for a timed run, but the time for this function itself will not be counted. For
example, you might copy a given array so it can be sorted in place by the run function. The
return value will be ignored.

• int run(data : τ*, param : int); This function should run your algorithm on the data
structure and should modify it in some way to record the result. The time for this function
call is the timing data we collect. This function should not call external library functions:
we want to test the efficiency of your code generator, not that of the library functions. The
return value will be ignored.

• int checksum(data : τ*, param : int); This function should reduce your output to a
checksum. The driver will use this to compare the checksum with the checksum obtained from
a reference implementation in order to catch errors. You should try to write this function so
it is likely to catch errors. In simple cases, such as function that computes an integer, the
checksum can be the value itself.

The driver will call init once to get a (deterministic) problem instance. It will then call
prepare followed by run and continue to repeat the prepare–run sequence a fixed number of times,
calculating an average running time for run. After the last run, checksum is called and compared
with the checksum of the reference implementation. It is important that prepare followed by run
is idempotent, so that each successive run should execute exactly the same way.

The driver will call init (1000); the run function for this parameter should take about 100ms
with the reference implementation, but you do not need to fine-tune this.

For ease of regression testing, your main function should, deterministically, call init, prepare,
run, and then return the result of checksum. The first line of the file should read #test return n
where n is that (deterministic) checksum.

A general strategy is to turn interesting test files from earlier labs into benchmarks.

Garbage Collector Test Files

If you are planning to implement a garbage collector, you should submit garbage collector test files.
We will not test the garbage collector for efficiency, only for correctness.

The format of the test files is as for Lab 4, except that you should add a function int
test(param : int). The memory usage of the program should go up with the parameter. We
encourage you to use the library function int rand(); to generate random test instances. The
result of test should be predictable and portable, depending only on the random seed which the
driver can set by calling the C library function srand.

You should also supply a function main which calls test after seeding the random number
generator with a fixed number. The output of this function should be the expected return value in
the first line.

The driver will call test multiple times with different parameters, random seeds, and memory
limits to verify that the program does not crash. It will also call main to verify the correctness of
the computation

4 Compilers

Your compilers should treat the language L3 as in Lab 4, including extern declarations. While we
encourage you to continue to support both safe and unsafe compilation, you may commit to one or

2



the other compiler and terminate with exit status 1 if l3c is called with the unsupported switch.

Optimizations

If you are implementing optimization for your L3 compiler, you have complete freedom which ones
to choose. The ones discussed in lecture so far and the textbook should be considered generally
important and constitute good choices. If you would like to specifically target safe compilation you
may pick array bounds check elimination which will be discussed in Lecture 25 and you can find in
Chapter 18.4 of the textbook.

Grading criteria include first the correctness of the compiler (including the optimizations) and
second the scope of the implemented optimization(s). Generally, more widely applicable optimiza-
tions should be prefered. However, it is also acceptable to go for a particular complex optimization
such as array bounds elimination. As a third criterion, the code quality of the optimization in terms
of algorithm, readability, and modularity are considered. Finally, the efficiency of the compiler itself
(as compared to the compiled code) is important only to the extent that each benchmarks should
compile within a generous time limit of 40 seconds.1

Garbage Collection

You have complete freedom which kind of garbage collector to implement. A garbage collector
will consist of the compiler proper and the runtime system. The interface from the compiled code
to the runtime system should be part of your design. Reasonable choices are a mark-and-sweep
or a copying collector, but even a conservative collector is acceptable. Incremental collectors are
significantly harder and should only be attempted if you already have a basic collector working.
Similarly, you should avoid optimizations; efficiency is only a minor concern for this lab. Functional
correctness is paramount, and the absence of memory leaks is a secondary criterion.

5 What to Turn In

On the Autolab server, the hand-in and status pages for the optimization and garbage collection
projects are separated, since different drivers will be employed.

Benchmarks or Tests (due 11:59 on Thu Nov 29)

All benchmark or garbage collection test files should be collected into a directory test/ (containing
no other files) and bundled as a tar file tests.tar with

% tar -cvf tests.tar tests/

to be submitted via the Autolab server. All together, you should submit at least 10 benchmarks
or tests. We enourage you to split them evenly in two categories: artificial and realistic. Artificial
benchmarks test a particular kind of optimization with a program that is likely to benefit from it.
Realistic benchmarks are programs that compute something intuitively meaningful, for example,
sorting or matrix multiplication. A similar distinction applies to the garbage collector, where an
artificial test just allocates memory according to a simple pattern where some of it may become
garbage, and realistic tests employ standard algorithms on data structures such as trees, linked
lists, or arrays. You are welcome to submit more than 10 test files.

1We reserve the right to revise this upwards based on preliminary handins.

3



Compiler Files (due 11:59pm on Thu Dec 6)

As for all labs, the files comprising the compiler itself and the runtime system (in case of a garbage
collector) should be collected in a directory compiler/ which should contain a Makefile. Impor-
tant: You should also update the README file and insert a roadmap to your code. This will be a
helpful guide for the grader.

Issuing the shell command

% make l3c

should generate the appropriate files so that

% bin/l3c --safe <args>
% bin/l3c --unsafe <args>

will run your L3 compiler in safe and unsafe modes, respectively, although as noted above you may
choose to support only one of these flags. For backwards compatibility, the default is --unsafe.

The command

% make clean

should remove all binaries, heaps, and other generated files.
In order to keep the files you hand in to a reasonable size, please clean up the directory and

then bundle it as a tar file compiler.tar, for example with

% cd compiler
% make clean
% cd ..
% tar -cvf compiler.tar --exclude .svn compiler/

to be submitted via the Autolab server. If you are using cvs instead of subversion, you may want
to use the switch --exclude CVS instead of --exclude .svn for a cleaner hand-in.

Term Paper (due 11:59 on Thu Dec 13)

You need to describe your implemented compiler and critically evaluate it in a term paper of about
10 pages. You may use more space if you need it. The recommended outline varies depending on
your project. Submit paper.pdf on Autolab.

Optimizations

Your paper should follow this outline.

1. Introduction. This should provide an overview of your implementation and briefly summarize
the results you obtained.

2. Optimizations. With a subsection for each separate pass or optimization you implemented,
describe what you implemented and briefly state the rationale for your choice. Also give a brief
description of the analysis algorithm itself, especially where it deviates from the description
in the texbook or other reference material, and how it fits into the overall structure of your
compiler.

4



3. Analysis. Critically evaluate the results of your optimizations. Show graphs or tables that
demonstrate the speed-ups or slow-downs you obtained. This requires that you save either
performance numbers or implementations (and ideally both) throughout the evolution of your
compiler. Explain the results to the extent you can.

You should hand in your paper as a PDF file on the Autolab server.

Garbage Collector

Your paper should follow this outline.

1. Introduction. This should provide an overview of your implementation and briefly summarize
the results you obtained.

2. Compilation. Describe the data structures, code, and information generated by the compiler
in order to support the garbage collector.

3. Runtime System. Describe the runtime system of the garbage collector, giving details of the
algorithms and also its implementation (most likely in C).

4. Analysis. Critically evaluate your collector and sketch future improvements one might make
to its basic design.

6 Notes and Hints

• Start small. If you optimize, make sure your instruction selection and register allocation are in
decent shape. Improving these is definitely a form of optimization and should be documented
in your term paper. If you are building a garbage collector you may want to stay away from
optimizations altogether to simplify the interface to the collector as much as possible.

• Apply regression testing. It is very easy to get caught up in the race to faster code. Besides
the benchmarks we have a large test suite collected over several labs; use these for regression
testing to make sure your compiler remains correct. The same applies to a garbage collector.

• Checkpoint frequently. A convincing term paper should compare before and after for your
optimizations, as well as compare to the reference implementation. In order to do this you
need to be able to run various versions of the compiler and collect statistics, so make sure
you can continue to run older versions. Hand in frequently. Also, it is quite possible you
may not be able to finish that last, grand optimization; having a decent prior hand-in is good
insurance.

• Read the assembly code. Just looking at the assembly code that your compiler produces will
give you useful insights into what you may need to optimize. You can also run gcc on the C
code produced by the reference compiler for comparison.

7 Changes

If changes are made to the above specification, they will be summarized here.

5


